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ABSTRACT
Multi-armed bandits are a family of reinforcement learning models

that are well-suited for recommendation, particularly in scenarios

where user feedback is plentiful, such as e-commerce or streaming

platforms. Bandits use a selection policy to choose a finite number

of offerings (called actions), and they observe “rewards” based on

whether the user interacts with those actions which are used to

update policy parameters. The online learning nature of bandits

makes offline experimentation difficult as bandits are being trained

on interactions coming from whichever selection policy was used

to create the logs. Two approaches to solving this problem are

the use of off-policy estimators, which attempt to adjust for the

counterfactual nature of the offline learning, and simulations which

allow for online learning but require a way to generate rewards for

all user-action pairs. We compare these two methods by training

several multi-armed bandit policies across two recently released

datasets: the Open Bandit Dataset from ZOZO and the Deezer

playlist dataset. Our experiments are built on the Open Bandit

Pipeline, released by ZOZO alongside their dataset. We run several

experiments on each dataset, and note the strengths andweaknesses

of policies and evaluation approaches. Furthermore, we release our

experiment code, enabling future reproducible experimentation

with additional policies and datasets not explored in this work.

1 INTRODUCTION
Multi-armed bandits are a family of algorithms for selecting a subset

of actions from a larger pool by trading off exploration of untested

actions with exploitation of those known to be successful. Bandits

are defined by a parametrized selection policy which picks the

actions to test for a given round, and those parameters are updated

when they observe the “rewards” of their selections. Bandits are

attractive for recommendation problems as the problem formulation

is analogous to recommendation: the actions are items and the

rewards are clicks, streams, purchases, views, etc. A/B tests offer

a way to compare bandit algorithms in the form of a hypothesis

test and have the advantage of collecting real data in a production

scenario on real users. However, A/B tests may not be feasible

during the research phase, when there is a larger space of options,

some of which are only minor variants. As a result, it is useful to

be able to evaluate bandit policies offline by comparing estimated

or simulated performance.

The sequential and online nature of bandit models makes offline

evaluation difficult. In this paper, we explore two datasets which

require separate methods for comparing bandit performance. In the

Open Bandit Dataset (OBP) from ZOZO [1], we have a dataset of

logged interaction data from two separate policies, and new policies

can be trained using those logs and their performance estimated

using off-policy estimators. In the Deezer carousel dataset [2], we

have user-item click probabilities we can use to simulate online

learning and evaluate the performance by simply looking at the

simulated rewards.

There have been several recent approaches to solve the problem

of offline bandit evaluation. A simple approach was proposed by

researchers at Yahoo in [3] [4], where a policy is learned offline on

logged data by only using logged interactions which “match” the

selected actions of the counterfactual policy, which grossly reduces

the number of data points the policy can learn on and works best if

the logs were generated using a uniformly random policy.

More complex approaches like Inverse Probability Weighting [5]

and Self-Normalized Inverse Probability Weighting [6], the Direct

Method [7], and double robust estimation [8] have been proposed,

and the task remains an area of active research.

The recently released Open Bandit Pipeline (OBP) [1] provides a

framework for studying both policies and estimation methods. Our

work extends ZOZO’s off-policy estimation andDeezer’s simulation

work to provide a side-by-side comparison of how policies perform

on the two datasets and how the different offline evaluationmethods

impact the results.

2 BANDIT METHODS
Multi-armed bandit methods are deployed in scenarios where we

have a selection of items (“arms”), each associated with an unknown
distribution of rewards, 𝑟 ∈ [0, 𝑅max]. The reward distribution is

typically observed as dependent to some action 𝑎 ∈ A and some

context 𝑥 ∈ X, so that 𝑝 (𝑟 ) ∼ 𝑝 (𝑟 |𝑎, 𝑥). Given a context, the action

is selected some distribution 𝜋 (𝑎 |𝑥), which is known as the policy.
Context-free policies do not rely on context 𝑥 , so those policies are

just written as 𝜋 (𝑎).
Due to the iterative nature of bandit recommenders, logged data

take the form of a series of observed contexts, actions, and rewards

generated from some behavior policy 𝜋𝑏 over 𝑇 rounds:

{(𝑥𝑡 , 𝑎𝑡 , 𝑟𝑡 )}𝑇𝑡=1 ∼
𝑇∏
𝑡=1

𝑝 (𝑥𝑡 )𝜋𝑏 (𝑎𝑡 |𝑥𝑡 )𝑝 (𝑟𝑡 |𝑥𝑡 , 𝑎𝑡 ) (1)

We can define the join distribution of the logged data of a given

context as 𝜋 (𝑥, 𝑎, 𝑡) := 𝑝 (𝑥)𝜋 (𝑎 |𝑥)𝑝 (𝑟 |𝑎, 𝑥). Ideally, we would like

to leverage the existing data generated from the behavior policy

𝜋𝑏 , D to estimate a target evaluation policy 𝜋𝑒 . This task objective

is defined by the policy value of the evaluation policy:

𝑉 (𝜋𝑒 ) := E𝜋𝑒 (𝑥,𝑎,𝑟 ) [𝑟 ] (2)
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Because the evaluation policy distribution 𝜋𝑒 cannot be directly

computed or measured in an offline setting, approaches using esti-

mators for the policy value leveraging D, s.t. 𝑉est (𝜋𝑒 ;D) ≈ 𝑉 (𝜋𝑒 ),
have been proposed and implemented in [1].

An alternative approach is to design an iterative generative pro-

cess for data synthesis, where data is iteratively sampled from a

distribution from logged data, 𝜋 (𝑥𝑡 , 𝑎𝑡 ) ∼ 𝜋 (𝑥𝑡−1, 𝑎𝑡−1 |D). This al-
lows us to explicitly compute the cumulative reward of a simulated

dataset.

These two approaches are our comparative approaches to the

task of off-policy estimation (OPE).

3 DATASETS
This project focuses on comparing twomethods of policy evaluation

on two publicly available datasets of historical data generated from

online bandit systems: the ZOZO Open Bandit Dataset [1] and

Deezer playlist carousel dataset [2].

3.1 ZOZOTOWN Open Bandit Dataset
The ZOZOTOWN dataset

1
contains user browsing activity on ZO-

ZOTOWN, the largest fashion e-commerce platform in Japan. In No-

vember of 2019 the platform ran a series of “campaign” experiments

on clothing item recommendations. The data from this experiment

contain 26 million user impressions and click through logs over a 7

day period, spread across “Men’s”, “Women’s” and “All” shopping

categories. This dataset was released as the Open Bandit Dataset

(OBD) for the purpose of establishing a public benchmark for bandit

evaluation. For each user impression session, we observe the items

recommended, their position in the recommendation interface, a

probability of each item being assigned to said position, and if the

recommended items are clicked on. The dataset also contains user

and item embeddings learned by their model. Using the logged

bandit feedback data and ground truth from two baseline policies

(uniform random and pre-trained Bernoulli Thompson), we can run

other bandit policy experiments and evaluate their offline bandit

metrics on real browsing data.

This work evaluated the results on a small set of policies and

a broad range of estimators using the methodology released with

the Open Bandit Pipeline (OBP) described in Section 4. Prior work

has focused on the performance methods of different estimators for

approximating the performance of a small set of policies. Contained

in the OBP are many policies that had not been previously evaluated

on the OBD, as prior work focused on evaluating the quality of the

estimators themselves, rather than that of the policies.

3.2 Deezer Carousel Dataset
The Deezer dataset

2
contains user and playlist interaction probabil-

ity data from French music streaming service Deezer. The dataset

task is playlist recommendation, filling 12 slots in a “carousel” mod-

ule on a user’s homepage with one of 862 professionally curated

playlists centered around genres, geography, or mood. Success for

this task is measured by playlist selecting the playlist and stream-

ing one full song (display-to-stream). While the dataset doesn’t

provide data from online A/B testing, it does offer an environment

1
https://research.zozo.com/data.html

2
https://zenodo.org/record/4048678

built from ∼1 million user preferences to simulate responses to

various bandit policies. This dataset is not real browsing dataset

like the ZOZOTOWN dataset, but rather a simulated environment

of probabilities to test various bandit algorithms. Latent user-item

preferences are encoded as a 97-dimensional vector from the fac-

torization of the interaction matrix between users and songs, with

users also being placed into one of 100 clusters through k-means

for “semi-personalization.” Playlists are described as the weights on

the 97-dimensional feature vectors, fit using logistic regression on

click data from Janurary 2020 (data that generated the embeddings

not available). The authors construct a “ground-truth” probability

of a user streaming a playlist using a sigmoid activation on the dot

product between user and playlist vectors. In this simulated envi-

ronment, we can replicate their simulated bandit policy evaluations,

as well as test new policies relative to their baselines.

4 IMPLEMENTATION
Ourwork builds upon the Open Bandit Pipeline [1], a Python library

which offers an an environment for loading datasets, learning bandit

policies, and performing off-policy estimation. The library was

released by ZOZO Research alongside their Open Bandit Dataset,

containing code to load and process their logged feedback data.

The library also comes with several prebuilt bandit policies and

off-policy estimators.

Our contribution includes the DeezerDataset class to load the

Deezer data and learn policies, several new policies implemented

in Deezer’s paper that were not in OBP, an Experiment class to

easily run multiple policies and off-policy estimators on a dataset, a

script to run experiments defined entirely in configuration files, and

several new visualizations of the results. All of our code is available

at https://github.com/daturkel/sd_bandits.

4.1 Deezer Dataset Loader and Simulation
The OBP only has a builtin dataset loader for ZOZO’s Open Ban-

dit Dataset. Using the supplied base class for datasets, we added

functionality to load the Deezer data.

However, OBP’s policies require feedback logs in order to learn.

For the Open Bandit Dataset, the dataset loader simply passes the

logs to the policy. For the Deezer data, since we only have click

probabilities to work with, the dataset loader simulates online policy
learning using a provided policy.

We implemented this online learning to match the simulation

done in Deezer’s paper. For each “batch,” we pick a random set of

20,000 users with replacement, and provide actions (playlists) for

each user based on the provided policy. Using Deezer’s provided

features, we can calculate the click probabilities for each playlist

presented to each user and then generate Bernoulli random vari-

ables to determine whether or not the user “clicked” each playlist.

These clicks are then used to update the policy’s parameters, and

the process is repeated over 100 batches.
3

We remained truthful to several aspect’s of Deezer’s simulation

designed to make it realistic. In particular, the “cascade” model of

reward observation when using the Deezer app, whose UI only

3
The Open Bandit Pipeline includes a SyntheticBanditDataset for performing the

same type of simulated online learning, but we did not discover it until late into the

project. However, we still would have had to heavily modify it to implement the

Deezer-specific behavior described in this section.

2
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displays the first three playlists without deliberate user scrolling. If

the user doesn’t click any of the playlists, we assume that they only

saw the first three and thus only “observe” the (negative) feedback

for the first three playlists, not learning anything about the other

nine. If the user did click any of the playlists, we observe all rewards

up until the first playlist they clicked, to simulate the fact that they

likely didn’t continue scrolling once they found a playlist they liked.

In our implementation, the cascade effect can be modified to

observe all rewards until the last clicked playlist (rather than the

first), or can be disabled altogether. The number of batches and

users per batch are also configurable.

As in the Deezer experiment, our simulation does not update

the bandit policy parameters until the end of each batch in order to

mirror the nightly retraining cycle of bandit systems in production.
4

The end result is that for any policy, we can simulate multiple

days of users interacting with the bandit, collect rewards, and re-

train once per batch. Because our policy is learning on simulated

data, rather than logged data, we do not need to use an off-policy

estimator to evaluate the performance and can instead interpret

the “online” rewards directly.

4.2 Bandit Policies
The Open Bandit Pipeline only implements some of the policies

we wanted to evaluate. To expand the pipeline, we built a number

of policies that would run on top of the OBP. These policies were

explore-then-commit and KL-UCB. Additionally, we built a wrapper
class for any context-free policy to be turned into a segmented

policy (brief descriptions of policies can be found in Section 5).

4.3 Experimentation Framework
Much of the OBP is designed around evaluating the performance

of off-policy estimators, with the examples in the OBP paper, code-

base, and documentation reflecting this focus. While there is code

supplied for estimator evaluation, we built out new functional-

ity for running policy-oriented experiments to shift the focus to

comparing policy performance across and within datasets.

We built a generic Experiment class and implemented it as

OBDExperiment and DeezerExperiment.
For an OBDExperiment, we pass the experiment the dataset, a list

of policies, a list of off-policy estimators, and optionally a regression

model if any of the estimators require one. Running the experiment

then performs several steps:

(1) Get logged feedback from the OBD Dataset.

(2) Use logged feedback to run off -policy learning for each ban-

dit policy.

(3) Estimate each policy’s rewards using each off-policy estima-

tor and generate bootstrapped confidence interval of esti-

mated mean rewards.

For a DeezerExperiment, we pass the experiment the dataset,

a list of policies, and optional simulation parameters (number of

users per batch, cascade mode, etc.) which can be set differently

for each policy. Running the experiment then performs a similar

4
Deezer’s experiment included one feature we did not replicate due to lack of time:

For any policy, the first three actions are shuffled before performing the observation

cascade, to account for the fact that the user theoretically sees the first three playlists

simultaneously, not in stricly left-to-right order.

procedure to OBDExperiment, but without the need for off-policy

estimation:

(1) Simulate online learning for each policy.

(2) Generate a bootstrapped confidence interval of mean re-

wards for each policy.

Both experiment classes save all relevant output, including action

choices and counts, feedback, and estimated or observed rewards.

The Experiment classes can be used interactively in a notebook,

but we also wrote scripts to automate building and running experi-

ments. The end-user only needs to point the script to a directory

with YAML files specifying the dataset, policies, and optionally

estimators to use. This allowed us to easily run multiple longer

experiments on NYU’s Prince cluster without the need for an inter-

active environment or detailed setup script. This method provides

opportunity for parallelized experiments of increased scale, even

with the addition of future datsets and policies, should further work

necessitate it.

4.4 Visualizations
We evaluate the overall success of the bandit policies by plotting

their cumulative reward gain as each round progresses. To capture

the evolution of bandit performance over time, we also show each

policy’s running average and cumulative rewards. Note that for

the Deezer experiment, rewards are indexed by batch rather than

round, since each batch can contain a variable number of rounds

due to the cascade model of observation.

Finally, for every proposed policy we calculate its relative es-

timated policy value by normalizing its estimated reward struc-

ture with the “ground-truth” policy’s expected rewards, with pol-

icy value calculated as per Equation (2). The ground-truth policy

for the OBDExperiment uses the logged data they observed from

their experiments (either a uniform random or Bernoulli Thomp-
son policy), while the Deezer “ground-truth” comes from the re-

wards of simulating a uniform random policy. The OBDExperiment
must use an off -policy estimator over the logged to calculate 𝑉 ,

whereas DeezerExperiment can directly use online policies assum-

ing their simulated environment can represent real browsing data.

As 𝑉 (𝜋𝑒 ;D) can only estimate of the true policy value 𝑉 , we use

the aforementioned bootstrapping methodology to generate 95%

confidence intervals for our estimated relative policy values.

5 EXPERIMENTS
Since the two data sources vary in their approach to calculating re-

wards given an action, we treated the evaluation of policies for each

source differently, coming up with different experiment pipeline

and evaluation criteria for each. The differing methods we used are

illustrated in Figure 1.

We divide the policies we tested into three categories: context-

free, contextual, and segmented policies.

Context-free policies only take into account past rewards to

inform the actions chosen. In particular, they are not personal-

ized, so the items offered are not dependent on the user they are

being presented to. Examples include random, 𝜖-greedy, explore-

then-commit, Bernoulli Thompson sampling [9], and KL upper

confidence bound [10] [11].

3
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Figure 1: Experimentation and evaluation procedure for logged and simulated data

Contextual policies allow the bandit to personalize the actions se-

lected by observing a user-specific and potentially time-dependent

context vector. The bandit typically has access to action-specific

contexts, and a goodness-of-fit between a user and each item is

calculated as a function of the user context and item context.

The only contextual policy we included in our experiments was

Linear 𝜖-greedy, although the Open Bandit Pipeline also implements

other contextual bandit policies that rely on both linear and logistic

regression to handle user-item contexts.

Segmented policies leverage pre-calculated user clusters to learn

a separate context-free bandit for each cluster. We only used these

policies on the Deezer data, since user clusters were provided. Fu-

ture work could explore generating clusters for users in the ZOZO

dataset in order to run segmented policies on that data.

We ran multiple policies on each dataset. For all policies but

random and KL-UCB, we experiment with two different hyper-

parameter settings; one biased toward exploitation and one to-

ward exploration. As an example, egreedy_exploit will randomly

choose an action only 1% of the time, whereas egreedy_explore
will randomly choose an action 10% of the time. All hyperparame-

ter settings and abbreviated policy names are listed in Table 1. As

shorthand, egreedy is 𝜖-greedy, etc is explore-then-commit, ts is

Thompson sampling, seg indicates a segmented variant, and lin
indicates a linear variant.

5.1 Off-Policy Learning and Estimation on OBD
As explained in section Section 3.1, the Open Bandit Dataset con-

tains logged interactions for several campaigns using both the

uniform random and Bernoulli Thompson policies. Since we have

logged data and known distributions for the logged data, the best

way to evaluate other policies is to use off-policy estimation. Choos-

ing the right off-policy estimator is not a trivial matter. Luckily, [1]

completed a benchmark on different estimators which we extend,

explained in Section 5.1.1.

For now, assume we have chosen a few off-policy estimators to

use for policy evaluation. Then, given a policy and the logged data,

we simulate the policy offline. This is done by (i) choosing an action

𝑎𝑒 given the evaluation policy/user, (ii) iterating through the logs

until we find an action 𝑎𝑏 that matches 𝑎𝑒 , (iii) adjusting the policy

parameters and overall reward counts based on the reward paired

with 𝑎𝑏 , and repeating (i)-(iii) until the logged data is fully iterated

through. Finally, we evaluate the results of the offline simulation

using the chosen off-policy estimator(s) and compare to the baseline

logged results.

For our policy experiments, we used the “All” users campaign

with the “Random” baseline behavior.

5.1.1 Off-Policy Estimator Benchmarking. A difficulty with evalu-

ating off-policy estimators is that we need a known baseline policy

and a known evaluation policy so we can get the “ground truth”

estimation. Luckily, the OBD contains logs from two baseline poli-

cies, uniform random and Bernoulli Thompson, which they used to

benchmark. The protocol for evaluating off-policy estimators can

be found in [1].

In their paper, Saito et. al evaluated in- and out-sample for both

Uniform Random → Bernoulli TS and Bernoulli TS → Uniform

Random cases for each of their campaigns. When extending their

benchmarking and selecting the best estimator to use for policy

evaluation, we decided to stick to the in-sample, Uniform Random

→ Bernoulli TS case. “In-sample” means that the ground truth for

the evaluation policy is calculated on the same data that the esti-

mator will use to estimate policy value, and Uniform Random→
Bernoulli TS means that the Uniform Random policy logged data

is used to evaluate on the Bernoulli TS policy. We chose this for-

mulation because it seemed the most realistic— one should use the

full sample to evaluate a policy (in-sample) and the best estimator

should be able to estimate a more complicated policy from a simple

one (Uniform Random→ BTS) rather than the other way around.

To extend the benchmarkingwork done in [1], we use a lightgbm
[12] model for estimators that require a regression model (such

as Direct Method, Doubly Robust, and all of the Doubly Robust

extensions). Saito et al. only used a logistic regression model but

provided functionality for lightgbm in the OBP.

5.2 On-Policy Learning and Estimation on
Deezer

Since we can directly calculate the probability of a playlist stream

for each user-playlist pair in the Deezer dataset, we can learn ban-

dit policies online without the use of ground-truth log data, as

described in Section 4.1.

While our simulation code offers several configuration options,

for our experiments we simply reproduced the primary settings
5

from Deezer’s own experimentation: rewards are observed up to

the first clicked playlist (or for the first three playlist if none were

clicked), and each simulation contained 100 batches of 20,000 users

each. Due to long computation times, we used 100 batches of 1000

users for Linear policies.

Once we have obtain our simulated log of rewards, we generate a

95% confidence interval of the mean from 100 bootstrapped samples.

5
Deezer found that disabling the cascade made all policies perform slightly worse, and

that delaying the updates until the end of each batch tended to favor policies with

randomization, since deterministic policies would be completely static for a full batch.

4
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(a) SNIPW estimated cumulative rewards on OBP. Simple policies like

𝜖-greedy and explore-then-commit performed better than contextual policies

like linear 𝜖-greedy.

(b) SNIPW estimated relative policy value on OBP.While there is clear

difference in policy performance, the variance of the estimator muddles the

results

(c) Deezer rolling mean rewards for context-free policies. The delayed
ascents of etc_explore and KL-UCB iareapparent, but the dominant policies

emerge almost immediately.

(d) Deezer rolling mean rewards, contextual and segmented policies.
The segmented variant of etc_exploit learns much slower than its unseg-

mented variant, since the exploration component now applies at the subpolicy

level.

Figure 2: Visualizations for policies evaluated on OBP and Deezer datasets.

Additionally, we compare the time-series of simulated rewards

across policies to see how some policies learn faster than others.

6 RESULTS
6.1 ZOZO Results
We show only results from the Self-Normalized Inverse Probabil-

ity Weighting (SNIPW) estimator in Figure 2a and Figure 2b. The

policies that leaned toward exploitation tended to perform slightly

better than their counterparts that leaned towards exploration.

Both Explore-Then-Commit policies greatly surpassed the baseline

policy, outperforming it by around 50%. Looking at Figure 2b, it

seems that etc_explore ended up performing only slightly worse

than etc_exploit. However, its large gains in cumulative rewards

towards the end signal that that policy could potentially end up per-

forming the best given more data and time. The relative policy value

bar charts in Figure 2b show that although there is a distinguishable

difference in policy performance, the off-policy estimation suffers

from high variance. As an example, the e_greedy_exploit policy

is estimated to perform anywhere from slightly above the baseline

to almost double the baseline.

The most surprising result is that the linear contextual policies

(lin_egreedy_exploit and lin_egreedy_explore) did not beat

the random baseline. This is likely due to the low power of the

regression techniques’ ability to predict rewards, and it may need

more data or more complex models to robustly learn actions from

user contexts.

6.1.1 Benchmarking Results. Our results showed that both Inverse

Probability Weighting (IPW) and SNIPW had the lowest errors,

matching the results demonstrated in literature [1]. While outside

the scope of our project, there remains ample research opportunity

in policy regression model selection for providing the strongest

estimator performance, and the tools developed in the course of

this project provide ample support and framework for exploring

the benefits of a well-tuned estimator.

6.2 Deezer Results
At a high level, our results show that Thompson Sampling methods

consistently performed best, trailed closely by explore-then-commit

5
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with a low exploration requirement. These results successfully re-

produce the results of the Deezer authors’ own experiments. KL-

UCB also performed well, with relative policy value nearly eight

times the baseline. The rolling mean rewards of all policies are

illustrated in Figures 2c and 2d. The plot shows how, for exam-

ple explore-then-commit with low exploration (etc_exploit) very
quickly achieves strong performance whereas ETC with high re-

quired exploration (etc_explore) doesn’t start performing well

until it hits its exploration threshold more than halfway through

the simulation.

Full context-free policies also typically outperformed their seg-

mented variants, with the exception of the 𝜖-greedy policies where

segmentation improved performance. As the data had 100 user seg-

ments, each subpolicy observes substantially fewer rewards than

the single unsegmented policy does. This is particularly damaging

for policies like seg_etc_explore, which must select each arm at

least 100 times before it can commit to using the most successful

one. At the segmented scale, this policy is stuck exploring and never

enters the exploitation stage, and thus acts and scores similarly to

the Uniform Random baseline. This result is in line with Deezer’s

observation that segmented policies outperformed fully personal-

ized ones, suggesting that leveraging commonalities between users

helps policies learn faster. This might also hint to a a strong pop-

ularity bias in Deezer’s dataset, where a small subset of policies

perform very well for most users.

The contextual methods also performed relatively well, with

lin_egreedy_exploit achieving six times the baseline and lin_
egreedy_explore over eight times the baseline. This result is some-

what unremarkable: the simulation itself relies on a linear (logistic)

model of click probabilities, so the linear models simply need to

learn an approximation of this ground truth (in fact, a logistic 𝜖-

greedy policy could potentially learn the supplied action contexts

as its weights, effectively reproducing the process by which the

action contexts were originally learned).

It is worth noting that an important underlying assumption

of Deezer’s dataset drives these results: the restriction that user-

playlist click probabilities are static and do not drift over time or

are influenced by user history. This can give an upper-hand to

exploitative or deterministic policies like etc_exploit and KL-

UCB, which ignore user preference change and may simply find

popular actions that will do well on average from that point on. The

simulation is then not able to test the degree to which the policies

can adapt to time-varying user preferences and is slightly biased

toward exploitation.

7 DISCUSSION/CONCLUSION
By extending the experimental methods and dataset capabilities

of the OBP, we ran additional experiments to shed light on the

benefits and disadvantages of two policy evaluation methods.

The experimental results from the ZOZO dataset aligned with

our expectations in terms of policy performance, but the results

from Figure 2b demonstrate significant variance in policy value

estimation, despite running on the entire dataset. Future work with

datasets of even larger magnitude may improve the consistency of

these estimators.

While Deezer’s simulated approach appears to be free of the

issue of high estimator variance, it suffers from weaker generaliz-

ability to practical use case scenarios. The synthetic data provided

by this model comes from a finite set of existing user data, so mod-

eling user’s evolving interests and changes is harder to predict and

update and make the results of our experiments less interpretable.

The restriction that user preferences are fixed over time is a large

limitation and benefits exploitative models. However, the simu-

lated data can be scaled up to provide massive amounts of data

with many actions, providing an experimental framework that can

greatly benefit from exploration of segmented policies. This is sup-

ported by strong policy performance when using Deezer’s released

users clusters.

In addition to the results demonstrated by our experiments, new

datasets and policy designs can be easily integrated into the exper-

imental framework built in this project. This project successfully

compared offline policy learning using both off-policy evaluation

and simulation. In extending OBP’s robust and powerful experimen-

tal framework and adding bindings for a very different dataset to

the library, we have further developed the ability to evaluate bandit

methods using consistent procedures and standardized, publicly-

available data.
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TABLES

Table 1: Bandit Policy Hyperparameters

Policy name Base Policy Parameters
random Random (none)

egreedy_exploit 𝜖-greedy 𝜖 = 0.01

egreedy_explore 𝜖-greedy 𝜖 = 0.1

ts_naive
Bernoulli Thompson

Sampling

𝛼 = 1, 𝛽 = 1

ts_pessimistic
Bernoulli Thompson

Sampling

𝛼 = 1, 𝛽 = 100

etc_exploit Explore-Then-Commit min_n = 20

etc_explore Explore-Then-Commit min_n = 100

kl_ucb KL-UCB (none)

seg_egreedy_exploit Segmented 𝜖-greedy 𝜖 = 0.01

seg_egreedy_explore Segmented 𝜖-greedy 𝜖 = 0.1

seg_ts_naive
Segmented Bernoulli

Thompson Sampling

𝛼 = 1, 𝛽 = 1

seg_ts_pessimistic
Segmented Bernoulli

Thompson Sampling

𝛼 = 1, 𝛽 = 100

seg_etc_exploit
Segmented Explore-

Then-Commit

min_n = 20

seg_etc_explore
Segmented Explore-

Then-Commit

min_n = 100

seg_kl_ucb Segmented KL-UCB (none)

lin_egreedy_exploit Linear 𝜖-greedy 𝜖 = 0.01

lin_egreedy_explore Linear 𝜖-greedy 𝜖 = 0.1

Table 2: Estimator Benchmarking, Random→ Bernoulli TS,
in-sample.

Estimator Error

dm 0.190±0.031

ipw 0.055±0.041

snipw 0.056±0.040

dr 0.058±0.041

sndr 0.058±0.041

switch-dr (𝜏=5) 0.136±0.031

switch-dr (𝜏=10) 0.103±0.033

switch-dr (𝜏=50) 0.058±0.041

switch-dr (𝜏=100) 0.058±0.041

switch-dr (𝜏=500) 0.058±0.041

switch-dr (𝜏=1000) 0.058±0.041

dr-os (𝜆=5) 0.162±0.028

dr-os (𝜆=10) 0.151±0.028

dr-os (𝜆=50) 0.120±0.028

dr-os (𝜆=100) 0.106±0.029

dr-os (𝜆=500) 0.079±0.033

dr-os (𝜆=1000) 0.071±0.036

mrdr 0.058±0.040

Estimators in bold performed the best (IPW and SNIPW). Run on 30 boot-

strapped samples with a Random baseline policy on the all campaign. Direct

method (“dm”) and double robust (“dr”) policies use lightgbm as prediction
models.
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