
Econometrics B: Letterboxd Collaborative Filter
Recommendation System

Dan Ehrlich and Johnny Ma

May 2, 2017

1 Introduction

The Netflix Challenge, beginning in 2006 and ending in 2009, was a challenge to reduce
the RMSE of Netflix’s rating prediction algorithm by at least 10%. The challenge involved
over 500,000 users and 12,000 movie ratings, which was entirely made unidentifiable and was
about 99% sparse, given that many users rated only a few movies. Many groups of academics,
computer scientists, and statisticians created their own algorithms, some of which are backed
up by mathematical theory, and used a training data-set to prepare for the test-data set, with
each set being a 50% split by user. There were numerous approaches, ranging from naive
averaging to ANOVA, neighborhood weighting, Latent Factor Modeling, and even Neural
Networks and Boltzmann machines [1]. Though it seems these approaches were successful, a
contemporary look at the implementation of these so called ”Filtering and Recommendation
Systems” in platforms such as Netflix, Spotify, and other Taste based industries leaves a lot
to be desired, especially compared to simple word of mouth recommendations. One wonders
why these algorithms seem to be bad at returning shows that one would actually want to
watch. Problems with the data are obvious: who, when, and why are rating Netflix movies?
Can one map song listening or movie watching behavior to actual preference? Economists
like to create models where the user has some decision or input, but the Netflix data has
no observations that indicate preferences for genres, time periods, actors, directors, etc.
beyond watching behavior. In essence, we seek to remedy these problems by implementing
the aforementioned Latent Factor Models using a novel data source that can potentially
fill these holes. No doubt many further considerations will arise, and potential to answer
more economic questions about taste formation or the influence on exogenous shocks (such
as Oscar nominations/wins) will be fruitful directions to take. We measure our success in
similar fashion; by using a training data set to run our algorithm, then testing with the
second half of the data to reduce the RMSE in rating predictions.

1



2 Data

2.1 Overview

This project was motivated by a desire to improve upon the Recommendation Systems based
on less detailed data such as that using in the Netflix Challenge. A few major problems with
the Netflix data is that few people actively rate movies (bias downwards for anger), all user
and item characteristics are lost, and there is no ability for the user to indicate preference.
This blocks off many user and item-based regressions that can be run to improve the system.
Therefore, we searched for a more robust and descriptive dataset of films.

We decided to use Letterboxd.com, a small but vibrant film rating site. movie rating
system has additional data that can ameliorate these issues. Letterboxd is a small but grow-
ing community of film fanatics, where users can rate movies, post reviews, and follow/like
other users and their reviews. Since this is mainly a diary-style rating platform for movie
enthusiasts, one can expect less sparsity and more truthful review/rating behavior, reducing
omission errors. In addition, a user can identify themselves by inputting their four ”favorite
movies.” These favorites give a lot of information about the user supplied by the user him-
self. Do they love older films, horror films, Japanese animation, etc. In addition, there is a
watchlist that many users have that indicates future desire to watch movies. There is also
more item (movie) information for each entry, such as genre tags, runtime, year and country
of release, a delineated histogram of ratings (from 0.5 to 5 stars, in 0.5 star steps), and all
crew and cast names.

In summary, this data source is much more rich in characteristics for both users and
movies, with the added bonus of some user input in their ”taste profile”. A negative involves
having to use Data Scrappers to extract this information, as Letterboxd has no workable
API. However, all users are in a large directory sorted by activity, and the site is wonderfully
built with easy html tags for all possible data of interest. Overall, a great data source for in-
vestigations in rating systems. A sample profile is here https://letterboxd.com/JohnnyMa/.

2.2 Scraping Procedure

The letterboxd.com website is well adapted for webscraping. Much of the film and user info
stems from the base ”letterboxd.com” URL, and are uniquely identified throughout.

The output we want to obtain from scraping is a data frame with users on the rows, films
on the columns, and associated ratings for each user and film. We started by generating a list
of users from letterboxd’s own user list, found https://letterboxd.com/people/popular/here.
This is a list sorted by ”popularity”, a metric that Letterboxd states is dependent on amount
of reviews, likes on reviews, and frequency of publication. Since we are taking from the most
popular users, we are likely skewing our population towards more the more film-obsessive
than your ordinary film Joe. However, this is potentially good for Recommendation systems,
as the data will be less sparse, and these high popularity film reviewers can be seen as ”taste
makers” who spend a lot of time reviewing and thinking about these films.

Once we have a list of users, we can enter their profiles using their user ID and being to
scrape user-related information. This includes their average rating, their number of ratings,
and up to 4 of their favorite films. The favorite film data is kept for each of these users and

2



can be used for a clustering exercise in an extension of this model. In addition, we can obtain
all the ratings that each user has given off of this user page, where it is stored in many separate
pages. Here is an example of such a page https://letterboxd.com/johnnyma/films/page/1/here.
We get a movie title and rating, which we can later merge into our final data frame.

Next we turn to the films themselves. We obtain a list of films from another convenient
page, htps://letterboxd.com/films/here, that lists films by their popularity. Again, the same
problems or blessings that the user list has due to it being sorted by popularity. Many larger
production and more popular films have many more reviews, while most obscure movies
hardly have any, especially for such a small site. Something to note in that this page is
populated using a JavaScript AJAX process, something that the scraping method had to
deal with in a special and time consuming way. Nevertheless.

Once we have a list of films, we can go into the film data and extract film level charac-
teristics. A sample film page can be seen https://letterboxd.com/film/la-la-land/here. We
collected the first two actors cast (usually the leads), the director, genres (up to 5) year of
release, number of ratings, and all the rating info from the histogram on the page, which
gives us average rating and frequency of each star level.

Thus, we merge our user list and film list together to create our primary data frame
we will be working with. Though this data frame does not contain the user and film level
characteristics, these are stored in an easily referenced location for future matching and
characteristic level regression analysis.

2.3 Summary Statistics

We can think of the data possessing two major attributes: film information and user infor-
mation. Film information includes number of ratings a movie receives, average rating of a
movie, the movie director and actors, the release data, the film genre. Although many of
these variables can be scrapped for IMDb, due to time concerns we were unable incorporate
many of these elements into our analysis. User information includes the number of ratings
made by a user, the average rating of a user, films watched but not rated by a user (the
data set denotes this as a 0 rating), a user’s favorite films, in addition to others. Finally, we
can think about the film-user information: the rating a user u gives movie i, and the time
the rating was made. Although the timing information is important to account for and we
elaborate later on potential ways to incorporate it into the model, due to the fact that we
scrapped our own data, this information is missing from our data set.

3



Figure 1: Average Movie Rating vs. Number of Ratings Per Movie

Before we begin to create formal models and predictions of ratings, we examined the data
to gain an understanding of some of the characteristics mentioned above. The first graph
displays the relationship between the average rating of a movie and the number of times it is
rated. One can observe a positive relationship between the two: as the frequency of a movie
being rated increases, the average rating for that movie increases as well. Although there are
movies that are less frequently ranked but have average ratings just as high as those ranked
often, there are also movies that are less frequently ranked and have low averages, which
isn’t true for the the movies that are ranked often. Furthermore, although it isn’t possible
to determine a casual relationship between the two, one can think of the relationships as a
general indicator of which movies are being watched: users are less (more) likely to watch
and rate bad (good) movies. We can test this directly with a kernel regression of the average
movie rating on a dummy indicator of whether individual u watched movie i. Similarly,
a kernel regression can be run on whether individual u rated movie i. Although the first
kernel regression may be prone to error since the information is self-reported, the Letterboxd
website consists of users who are more likely to provide consistent and accurate information
on their movie watching preferences and behavior. We graph the kernel regression in figure
2.

4



Figure 2: Kernel Regression of Average Movie Rating on Dummy indicating whether indi-
vidual u watched movie i

Note that movies that are ranked relatively fewer times are still overall ranked often.
This is one of the benefits of this data set: there are few movies that are ranked significantly
more than others and users rank movies that they like and dislike with more consistency.
This is evident form figures 3 and 4, which are the XXX and YYY distributions, respectively.

Figure 3: Density of Average Movie Rating by User

5



Figure 4: Density of Number of Ratings by User

3 Models

3.1 Naive Models

We start by implementing three naive models to get a better sense of the data. In the first
naive model, we set the predicted value of every movie rating to the average value of all
the ratings. This gives us a RMSE of 2.0439. The value of the RMSE may vary slightly,
since every time we calculate the RMSE we do so on a new training data set randomly
generated from all the ratings. The second naive model sets the predicted value of a movie
to the average rating of that movie, while the third naive model calculates a similar average
but with respect to the individual. The RMSE of the second and third naive model are,
respectively, 1.6337 and 1.9356. Note that the RMSE of the second naive model is smalled
than that of the third, implying that there is a smaller variance in ratings by movie than
ratings by user.

3.2 Baseline Latent Factor Model

We implement a baseline model proposed by the winning team of the Netflix Challenge,
BellKor (Koren 2009). Let

rui = µ + bi + bu + εui
where rui is the rating of movie i by individual u; µ is the average movie rating for all i and
u; bi is the movie bias; and bu is the individual bias. We include the movie and individual
bias in the model because some movies may be much better or much worse than others, and
individuals may be harsher or lighter reviewers than others. To minimize the RMSE, solve

min
bi,bu
∑
u,i

(rui − u − bi − bu) + λ1(∑
u

b2u +∑
i

b2i )

6



We estimate bi and bu using the following formulas:

bi = ∑u∈R(i)(rui − u)
λ2 + ∣R(i)∣

bu = ∑i∈R(u)(rui − u − bi)
λ3 + ∣R(u)∣

where R(u) is the set of movies rated by user u; R(i) is the set of users who rated movie i;
and λ2, λ3 are regularization parameters. Although they are generally determined through
validation, we set them equal to the regularization parameters used by the BellKor team:
λ2 = 25, λ3 = 10. We solve for the predicted values:

r̂ui = µ + bi + bu
and find the RMSE to be 1.5150. As expected, it is lower than the RMSE of all of the
previous naive models. Although the RMSE is relatively high, several factors contribute to
its magnitude. First is the size of the data set: our data set is less than 1 percent of that of
the Netflix Challenge which results in a less accurate estimate. Most importantly, however,
users on Letterboxd are likely to rate their movies regardless of the how much they liked the
movie, which results in the ratings having a large variance.

As a check, we graph the residuals of the baseline model and they align with our expecta-
tions. The lowest values only have negative residuals, the highest has only positive residuals,
and the residuals for each rating have approximately the same range.

Figure 5: Residuals From Baseline Model

7



3.3 Neighborhood Model: K-Nearest Neighbor

The neighborhood model is one of the foundational models in Collaborative Filtering. Though
it has many problems, such as the first-rater problem and sparsity, it is used in most Recom-
mendation Systems because it is easy to implement, scales well, and costs relatively little,
given that all the inputs and outputs are contained within the data frame and more inputs
only increase the effectiveness of the model.

The Neighborhood Model involves finding users whose rating score are most correlated
with the user of interest. This ”correlation” is calculated using a Pearson’s R test, and is
created for each user compared to each other user. These are used as weights, to weight
the ratings of the neighbors in predicting the ratings for the user of interest. This model is
mathematically shown as following, taken from [5].

Pa,u = ∑m
i=1(ra,i − r̄a) ∗ (ru,i − r̄u)√

∑m
i=1(ra,i − r̄a)2 ∗∑m

i=1(ru,i − r̄u)2
where ra,i is the rating given to item i by user a, is the mean rating given by user a

and m is the total number of films. From this Pearson Correlation, we have our predicted
ratings as:

pa,i = r̄a + ∑
n
u=1(ru,i − r̄u) ∗ Pa,u

∑n
u=1Pa,u

where pa,i is the prediction for user a for item i, and Pa,u is the Pearson Correlation
between users a and u and n is the number of users in the neighborhood. We follow the
authors and [6] in choosing a neighborhood size of 30.

We implemented this Collaborative Filtering method on our Letterboxd data. We did
not replace NAs with Zeros, as is usual practice. Therefore, some users have no predicted
ratings for movies that no one in their neighborhood viewed. However, this problem was
minimal as it was largely localized to films the user had also not seen, and the calculation
of the RMSE ignores NAs. The RMSE value we obtain from this method is 1.291371, which
is the lowest value out of all our models.

4 Conclusion

The baseline latent factor and nearest neighbor models we implement leave much to be de-
sired and require numerous extensions to improve further. One such extension, for example,
is the addition of time dependent bias in the latent factor model. User preferences develop
over time: one may at first prefer action and adventure movies, but then grow to love drama
and comedy. Similarly, movie popularity changes over time: winning the Oscars, for ex-
ample, may generate more goodwill for a particular movie. In addition to including time
dependent variables in the model, we can also directly test for the magnitude of the effect
that winning the Oscars has on ratings. Although this information is present in the Netflix
Data, since we scrapped our data, the time of each rating was not included in the data set.
Furthermore, as the BellKor team notes, there is no perfect model and their best results

8



(i.e lowest RMSE) came from joining the latent factor and the nearest neighbor models to-
gether. Due to time constraints, we are unable to develop either model fully or combine
them. Furthermore, our use of the richness of the Letterboxd data set is shallow in terms of
developing a Pearson correlation and backing out user preferences. For example, we could
use a clustering algorithm to cluster users by their stated favorite movies to group users
prior to running our collaborative filter method. In addition, we could use user and item
level characteristics and regressions. We leave these as projects for a latter date.

References

[1] Bell, Robert M., and Yehuda Koren. ”Lessons from the Netflix prize challenge.” Acm
Sigkdd Explorations Newsletter 9, no. 2 (2007): 75-79.

[2] Feuerverger, Andrey, Yu He, and Shashi Khatri. ”Statistical significance of the Netflix
challenge.” Statistical Science (2012): 202-231.

[3] Herlocker, Jonathan L., et al. ”An algorithmic framework for performing collaborative
filtering.” Proceedings of the 22nd annual international ACM SIGIR conference on Re-
search and development in information retrieval. ACM, 1999.

[4] Koren, Yehuda. ”The BellKor Solution to the Netflix Grand Prize.” 2009.

[5] Melville, Prem, Raymond J. Mooney, and Ramadass Nagarajan. ”Content-boosted col-
laborative filtering for improved recommendations.” In Aaai/iaai, pp. 187-192. 2002.

[6] Salakhutdinov, Ruslan, Andriy Mnih, and Geoffrey Hinton. ”Restricted Boltzmann ma-
chines for collaborative filtering.” In Proceedings of the 24th international conference on
Machine learning, pp. 791-798. ACM, 2007.

[7] Zhou, Yunhong, Dennis Wilkinson, Robert Schreiber, and Rong Pan. ”Large-scale paral-
lel collaborative filtering for the netflix prize.” In International Conference on Algorithmic
Applications in Management, pp. 337-348. Springer Berlin Heidelberg, 2008.

9


